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The optical memory effect is an interesting phenomenon that has attracted considerable attention in recent dec-
ades. Here, we present a new physical picture of the optical memory effect, in which the memory effect and the
conventional spatial shift invariance are united. Based on this picture we depict the role of thickness, scattering
times, and anisotropy factor and derive equations to calculate the ranges of the angular memory effect (AME) of
different scattering components (ballistic light, singly scattered, doubly scattered, etc.), and hence a more accurate
equation for the real AME ranges of volumetric turbid media. A conventional random phase mask model is modi-
fied according to the new picture. The self-consistency of the simulation model and its agreement with the experi-
ment demonstrate the rationality of the model and the physical picture, which provide powerful tools for more
sophisticated studies of the memory-effect-related phenomena and wavefront-sensitive techniques, such as wave-
front shaping, optical phase conjugation, and optical trapping in/through scattering media. ©2019Chinese Laser

Press

https://doi.org/10.1364/PRJ.7.001323

1. INTRODUCTION

In 1988 Feng et al. derived and proposed the angular memory
effect (AME), also called the tilt memory effect in a waveguide
geometry [1], and later observed the shift-invariant laser speckle
through a ground glass disk [2]. In their theory, the AME range
is inversely proportional to the thickness of the medium with-
out a consideration of optical parameters of scattering media,
such as scattering coefficient and anisotropy factor. They also
pointed out that the presence of the memory effect in the
multiple-scattering situation is less apparent intuitively, but
did not give further explanation. Recently, a method of imaging
through the speckle correlation, i.e., speckle autocorrelation
imaging [3], has inspired many interesting studies based on
the AME [4–13]. However, the field of view is always limited
by the small range of the AME, typically ∼400 millidegrees for
1 mm thick chicken breast tissue [13]. Yang et al. found that
the measured AME ranges of frozen chicken breast tissues were
larger than theoretical predictions [14]. Soon afterward, Schott
et al. [13] found that a large anisotropy factor g could enhance
the AME range by more than 1 order of magnitude compared
to g � 0. In 2015, based on the macroscopic characteristics of
the scattering transmission matrices of anisotropically scattering
media, Judkewitz et al. proposed a new type of memory effect,
i.e., the shift memory effect from the matrix correlations, and
explained its relationship with the AME [15]. Two years later,

Osnabrugge et al. [16] predicted a more general class of com-
bined shift and tilt correlations in scattering media under the
paraxial approximation and demonstrated experimentally with
an optical thickness up to 1.76 (multiply scattered light is not
dominant) and g � 0.98. However, the equations relating
the AME range Δθ to the thickness d are still not far from
the original Δθ ≈ λ∕πd . How the thickness, scattering times
(the number of scattering events a photon experienced, or
equivalently a product of the scattering coefficient and the
photon path length), and anisotropy factor come into play
remains unclear.

In this paper, we present a new physical picture of the
memory effect that can unify the memory effect and shift
invariance. The roles of the thickness, scattering times,
anisotropy factor, and so on in the memory effect are inter-
preted in a more physical and intuitive manner. The AME
range of each scattering component is analyzed and a new equa-
tion for estimating the AME range is derived. Experimental
results and simulations based on a modified multiple-phase-
mask model are presented to validate the physical picture.

2. PRINCIPLE

If the diameter of a laser beam illuminating an aperture is
smaller than the aperture, the beam propagates as if no aperture
exists. The tilt in the incident beam at an angle θ leads to the
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same amount of tilt in the output beam [see Fig. 1(a)]. Under
the paraxial condition, the distortion in the beam spot on the
observation plane is trivial, and the aperture can be considered
as a shift-invariant system. Once we introduce a random phase
distribution to the aperture—also called a random phase mask
—we see speckles on the observation plane instead of a bright
spot. Tilting the incident laser beam causes the entire speckle
pattern to shift, as shown in Fig. 1(b), which is referred to as
the memory effect—more specifically, the AME. While a single
spot is considered in the shift invariance [Fig. 1(a)], the entire
speckle pattern is used as the reference for speckle correlation in
the memory effect [Fig. 1(b)].

For both systems, the light fields on the observation planes
can be written as

U �x, y� �
ZZ

U 0�x1, y1�A1�x1, y1�h1�x − x1, y − y1�dx1dy1,

(1)

where U 0�x1, y1� represents the field incident upon the aper-
ture plane, h1 � e−ikd

iλd expf−ik2d ��x − x1�2 � �y − y1�2�g is a trans-
mission function from the aperture plane to the observation
plane, and A1 is the aperture function. For a pure aperture,
e.g., a diaphragm,

A1�x1, y1� �
�
1 x1, y1 ∈ Σ
0 otherwise

, (2)

where Σ is the effective area of the aperture. For a random phase
mask,

A1�x1, y1� �
�
exp�−iφ�x1, y1�� x1, y1 ∈ Σ

0 otherwise
, (3)

where φ�x1, y1� is a random function. The phase mask scrambles
the wavefront, and a speckle pattern is therefore generated.
Correlating the shifted speckle pattern with the original one
at θ � 0, a correlation curve can be obtained, and the full width
at e−1 of the maximum of the curve is defined as the AME range.
Considering the detected intensity distributions in Fig. 1(a) as
special speckle patterns, we can also obtain a correlation curve.
Within the shift-invariant range, i.e., one satisfying the paraxial

approximation, the patterns in Fig. 1(a) are similar and corre-
lated. The full width at e−1 of the maximum of this correlation
curve is then determined by the shift-invariant range. If we take
the random phase mask as a scrambled wavefront impinging on
the unobstructed aperture, it is also a shift-invariant system, and
its AME range is the same as its shift-invariant range. Thus, the
memory effect can be considered high-order shift invariance.
Regardless of the severity in the fluctuation in φ�x1, y1�, the
AME range of System 2 does not change, which means that sin-
gle scattering itself is not responsible for the small range of the
memory effect.

When inserting another aperture/mask into the optical path
of System 2 to obtain Systems 3 and 4, as shown in Fig. 2, the
field on the observation plane becomes

U �x, y� �
ZZ ZZ

U 0�x1, y1�A1�x1, y1�h1�x2 − x1, y2 − y1�

× A2�x2, y2�h2�x − x2, y − y2�dx1dy1dx2dy2, (4)

where Ai (i � 1, 2) is the ith aperture function,
h1 � e−ikd

iλd expf−ik2d ��x2 − x1�2 � �y2 − y1�2�g is the transmission
function from the first aperture plane to the second aperture
plane, and h2 � e−ikl2

iλl2
expf−ik2l2

��x − x2�2 � �y − y2�2�g is the
transmission function from the second one to the observation
plane. The two configurations of A2 can be depicted in the
same forms as Eqs. (2) and (3), respectively.

For System 3, it is obviously a shift-invariant system; its
shift-invariant range is the same as a system consisting of
two unmasked apertures. For System 4, since Mask 2 has in-
ternal structures, a shift in the input wavefront on Mask 2 will
result in a different output, breaking the shift invariance. For
better understanding, we take the Fourier transform of Eq. (4)
and obtain

U �fx ,fy�

�
�
�U 0�fx ,fy�⊗A1�fx ,fy��exp

�
ikd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−�λfx�2−�λfy�2

q ��

⊗A2�fx ,fy�exp
�
ikl 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−�λfx�2−�λfy�2

q �
, (5)

where ⊗ is the convolution operator,

exp

�
ikd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − �λfx�2 − �λfy�2

q �
is the Fourier transform of

Fig. 1. Comparison of laser light incident upon an aperture (System
1) and a random phase mask (System 2) with no thickness. (a) Tilting
the laser beam an angle θ (a shift of dθ along the y axis correspond-
ingly) results in the same amount of tilt (a shift dθ on the observation
plane) in the output, as in a typical shift-invariant phenomenon.
(b) Tilting the laser beam leads to a corresponding shift in the entire
speckle pattern. The red and yellow arrows call attention to similar
characteristics and their shifts.

Fig. 2. Comparison of light propagating through two screens in
sequence. The second screen is (a) an aperture, referred to as
System 3, and (b) a random phase mask, referred to as System 4.
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h1, and exp

�
ikl 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − �λfx�2 − �λfy�2

q �
is the Fourier trans-

form of h2. For System 3, A2�fx , fy� ≅ δ�fx , fy�, and
Eq. (5) can be simplified as

U �fx ,fy�

��U 0�fx ,fy�⊗A1�fx ,fy��exp
�
ik�d�l2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−�λfx�2−�λfy�2

q �
:

(6)

The Fourier transform of Eq. (1) is

U �fx ,fy�

� �U 0�fx ,fy�⊗A1�fx ,fy��exp
�
ikd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− �λfx�2 − �λfy�2

q �
:

(7)

Comparing Eq. (6) to Eq. (7) reveals that obviously the AME
range of System 3 is also the original shift-invariant range. For
System 4, A2�fx , fy� has a broad distribution, especially for a
white-noise phase mask that has a zero lateral correlation length
(to be discussed further) for which jA2�fx , fy�j � constant.
Consequently, the original input wavefront is totally scrambled
through Mask 2, decimating all memory effect as derived
below.

If Mask 1 is just an unmasked aperture, will the memory
effect remain? If A1�fx , fy� � δ�fx , fy�, Eq. (5) can be simpli-
fied as

U �fx , fy� �
��

U 0�fx , fy� exp
�
ikd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − �λfx�2 − �λfy�2

q ��

⊗ A2�fx , fy�
�
exp

�
ikl2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − �λfx�2 − �λfy�2

q �
:

(8)

Only when the incident light field U 0 is a normally incident
plane wave, i.e., U 0�fx , fy� � δ�fx , fy�, does Eq. (8) share the
same format as Eq. (7). Once the incident wavefront has an
internal structure, tilting the incident light leads to a relative
shift between the wavefront and the second phase mask after
propagation, which introduces changes and damages the shift
invariance. If the medium in which the light propagates has a
negligible thickness, there is no relative shift between the wave-
front and the cross section of a turbid medium when tilting the
input. This observation explains how the thickness comes into
play in the AME and how the incident plane in which the beam
tilt pivot is located affects the range of the memory effect [17].

The intensity correlation function of two speckle patterns
can be expressed as

C �2,2��x, y, x 0, y 0� � hI�x, y�I�x 0, y 0�i, (9)

where h� � �i denotes the ensemble average and I�x, y� �
U �x, y�U 	�x, y�. For a practical random phase Mask 2—
typically a ground glass disk—its fluctuation can be modelled
by a complex circular Gaussian random process with zero mean
[18]. Then, the field correlation can be expressed as

hA2�x2, y2�A	
2�x 02, y 02�i

� exp

�
−
�2π�n − 1��2σ2

λ2κ2
��x2 − x 02�2 � �y2 − y 02�2�

�
, (10)

where σ and κ are the standard deviation of the height and the
transverse correlation length of the ground glass disk, respec-
tively, and n is its refractive index. After derivation (see
Appendix A), we obtain the AME range:

Δθ � λ

2πd
·

κffiffiffi
2

p �n − 1�σ : (11)

Obviously, the AME range of the system is affected by the
distance d and the characteristics of the phase maskffiffiffi
2

p �n − 1�σ∕κ, which quantifies the relative roughness. For
a white-noise Mask 2, κ � 0, Δθ � 0, there is no memory
effect at all as stated above.

If we define Δx2 � x2 − x 02 and Δy2 � y2 − y
0
2, Eq. (10)

becomes

hA2�x2, y2�A	
2�x 02, y 02�i � exp

�
−
�2π�n − 1��2σ2

λ2κ2
�Δx22�Δy22�

�
:

(12)
According to the autocorrelation theorem [19], the spatial
power spectral density (sPSD) of the ground glass phase mask
can be written as

S�fx , fy� �
ZZ

exp

�
−
�2π�n − 1��2σ2

λ2κ2
�Δx22 �Δy22�

�

× exp
�
−i2π�fxΔx2 � fyΔy2�

�
dΔx2dΔy2

� λκ

2
ffiffiffi
π

p �n − 1�σ exp

�
−

λ2κ2

�2�n − 1��2σ2 �f
2
x � f 2

y �
�
,

(13)

where S�fx , fy� � jM�fx , fy�j2 and M �fx , fy� is the Fourier
transform of A2�x, y�.

Here, we ask ourselves the following questions. How do we
connect the phase mask model to a real scattering medium with
some thickness? If the space between Planes 1 and 2 is filled
with scattering medium, can we concentrate all the scattering
effect onto Plane 2 and replace it with an equivalent phase
mask?

We know that each occurrence of scattering has a phase
function corresponding to an angular distribution of the inten-
sity of the scattered light. A commonly used approximation is
the Henyey–Greenstein phase function [20]:

P1�θ� �
1 − g2

2�1� g2 − 2g cos θ�3∕2 : (14)

To obtain the angular spectrum of the total scattered light in-
tensity, we need to know the weights of different scattering com-
ponents and the phase function of each. According to Beer’s law,
I � I 0 exp�−μsd �, after transmission through a thickness d in a
scattering medium, the weight (probability) of ballistic light is
W 0,d � exp�−μsd �, where μs is the scattering coefficient. Next,
we derive the weightW 1,d for a singly scattered photon. Its path
contains three parts: first, free propagation from position 0 to z,
where 0 < z ≤ d ; second, scattering at z; and third, free propa-
gation from z to d . Thus, the probability of a single scattering
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event is a product of the probabilities of the three sub-events:
exp�−μsz�μsd z exp�−μs�d − z��. Since scattering can occur at
any position between 0 and d ,W 1,d is an integral over z, which
is calculated asW 1,d � μsd exp�−μsd �. Similarly, the possibility
for a photon to be scattered m times after propagating over a
distance d in the medium can be expressed as

Wm,d � 1

m!
�μsd �m exp�−μsd �, m � 0, 1, 2…: (15)

The Henyey–Greenstein phase function is circularly symmetric;
hence, there is no azimuth angle φ in Eq. (14). For a photon
scattered m times, its phase function is also circularly symmetric
and can be calculated by the (m–1)-times self-convolution of
P1�θ�:

Pm�θ� � P1�θ� ⊗ …⊗ P1�θ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
m

, m � 1, 2, 3: (16)

The angular distribution of ballistic photons is P0�θ� � δ�θ�.
Now, we can calculate the overall angular distribution of the

scattered light intensity as

P�θ� �
X
m

W m,dPm�θ�: (17)

After performing a transformation from fx − fy coordinates
to θ − φ coordinates, where fx � sin θ cos φ∕λ and fy �
sin θ sin φ∕λ are the spatial frequencies along the x and y axes,
respectively, Eq. (13) becomes

S�θ,φ� � λκ

2
ffiffiffi
π

p �n − 1�σ exp

�
−

κ2sin2 θ

�2�n − 1��2σ2
�
: (18)

To replace the thick turbid medium with an equivalent phase
mask, they should share the same sPSD, i.e., Eq. (18) should be
equal to Eq. (17):

λκ

2
ffiffiffi
π

p �n − 1�σ exp

�
−

κ2sin2 θ

�2�n − 1��2σ2
�

�
X
n

W d ,nPn�θ�:

(19)

If d � 0, Eq. (19) becomes

λκ

2
ffiffiffi
π

p �n − 1�σ exp

�
−

κ2sin2 θ

�2�n − 1��2σ

�
� δ�θ�, (20)

which means that
ffiffiffi
2

p �n − 1�σ∕κ � 0, i.e., the phase mask is
flat with no phase fluctuation, and the AME range is the same
as the shift-invariant range.

If d is equal to the mean free path (MFP), i.e., μsd � 1,
Eq. (19) becomes

λκ

2
ffiffiffi
π

p �n−1�σ exp

�
−

κ2sin2θ

�2�n−1��2σ2
�

� e−1δ�θ�� e−1
1−g2

2�1� g2 −2g cos θ�3∕2

� e−1

2

1−g2

2�1�g2 −2g cos θ�3∕2⊗
1−g2

2�1� g2 −2g cos θ�3∕2�…:

(21)

The weight of ballistic light decreases to e−1. For singly

scattered light,
ffiffi
2

p �n−1�σ
κ can be calculated from

λκ
2
ffiffi
π

p �n−1�σ expf− κ2sin2 θ
�2�n−1��2σ2g �

1−g2

2�1�g2−2g cos θ�3∕2, and the AME

range can be obtained on the basis of Eq. (11). Similarly,
we can obtain the weights and AME ranges of doubly
and multiply scattered light. Obviously, both the weight
and the AME range decrease with the increasing scattering
events. The entire AME range of an MFP-thick medium
is the weighted sum of the ballistic light and different
scattering components. However, the weights in the AME
are not proportional to the weights in the angular distribution
of intensity because of the nonlinearity of both Eqs. (11)
and (19).

For other thicknesses, we can always fit the
ffiffiffi
2

p �n − 1�σ∕κ
for different scattering components and calculate the corre-
sponding AME ranges. As scattering times increase, the corre-
sponding AME range decreases. The entire AME range is a
weighted sum of all scattering components.

3. SIMULATION AND EXPERIMENTAL RESULTS

From the above derivations, it is clear that the DC component
δ�fx , fy�, i.e., the ballistic light, has an important contribution
to the memory effect. On the basis of the physical picture, we
design a new multiple-phase-mask model, which models a thick
scattering medium as multiple phase masks evenly separated
(optional) in sequence. The product of the interval between
adjacent masks and the number of phase masks equals the
medium thickness. In the conventional multiple-phase-mask
model [13], several successive evenly spaced phase masks are
applied, and light scattering is assumed to occur only at the
masks. A single mask represents a single scattering event; there-
fore, the spatial frequency distribution of the mask is deter-
mined by only the phase function, and the distance between
two adjacent masks is set to be the MFP. However, the memory
effect of the conventional model is much smaller than that
of a real scattering medium. Now, we know that the main prob-
lem of this model is the exclusion of ballistic light. By using
Eq. (19) to generate a phase mask (see Appendix B for the
workflow), we integrate more ballistic light into the simulation
(see Appendix C for a comparison of the new and conventional
phase mask models), and the simulated memory effect curve
agrees well with the experimental results, as shown in Fig. 3.
The angular distributions of scattered light intensity calculated
using Eq. (17) are compared with the standard Monte Carlo
(MC) simulation, in which scattered photons are classified ac-
cording to their directions instead of positions. The results
agree well, which means that Eq. (17) is an accurate description
of the angular distribution of scattered light. The simulation in
Fig. 3(c) shows that less scattered light has a larger AME range.
A direct way to expand the AME range is to select less-scattered
photons.

In the experiment, the turbid sample is made of silicon mi-
crospheres, porcine gelatin, and distilled water with a scattering
coefficient of 10 mm−1 and a thickness of 1 mm. The micro-
spheres have an average diameter of 2.5 μm and a refractive
index of 1.45, and the refractive index of gelatin is 1.33.
According to the Mie theory, the anisotropy factor g � 0.98.
The AME curve was measured by scanning a time-reversed
focus (see Appendix D for a schematic figure of the
principle) [8,17,21].
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4. DISCUSSION AND CONCLUSION

The relative shift between the wavefront and the scattering
medium is the reason for the break of the AME. When the
correlation lengths of the wavefront and equivalent phase mask
are smaller, the AME range is smaller. The translation memory
effect, i.e., the shift memory effect, is also influenced by the
relative shift between the wavefront and the cross section in
the medium. Essentially, they are the same. With the aid of
the new picture, we can explain the phenomena of different
AME ranges for turbid media with the same physical thickness
or optical thickness. For a thick turbid medium, the AME
range of multiply scattered light is small; the main contribution
to a measurable AME range is the ballistic and singly scattered
components. To expand the AME range, we can select more
ballistic and singly scattered light in detection. Compared to
the conventional multiple phase mask models, the new one
is closer to simulate coherent wavefront propagation in scatter-
ing media.

In summary, we present a new physical picture for the op-
tical memory effect, whose validity is not limited by the thick-
ness of the medium. In this picture, the memory effect and shift
invariance are united with the intensity correlation. We depict
the role of thickness, scattering times, and anisotropy factor,
analyze the AME ranges of different scattering components,
and derive a new equation to estimate the AME range, which
is affected by the characteristics of the random phase masks and
the distance. In other words, the AME range of a thick turbid
medium is not determined just by its thickness but also by
the scattering coefficient and anisotropy factor. Based on the
new physical picture, we modify the traditional random phase
mask model to a more physical one. The new picture and more
flexible new model provide powerful tools for further study of
phenomena based on the memory effect, and wavefront sensi-
tive techniques, such as wavefront shaping [22–24], optical
phase conjugation [25–27], and optical trapping [28] in/
through scattering media. It will impact biomedical imaging,

seeing through clouds, photodynamic therapy, and light
manipulation in/through turbid media.

APPENDIX A: DERIVATION OF THE SPECKLE
CORRELATION AND AME RANGE

Substituting Eq. (4) into Eq. (9), we obtain

C �2,2��x,y,x 0,y 0�

�
ZZ ZZ ZZ ZZ

dx1dy1dx
0
1dy

0
1dx

0 0
1 dy

0 0
1 dx

0 0 0
1 dy 0 0 01

×hA1�x1,y1�A	
1�x 01,y 01�A1�x 0 01 ,y 0 01 �A	

1�x 0 0 01 ,y 0 0 01 �i
×U 0�x1,y1�U 	

0�x 01,y 01�U θ�x 0 01 ,y 0 01 �U 	
θ �x 0 0 01 ,y 0 0 01 �

×
ZZ ZZ ZZ ZZ

dx2dy2dx
0
2dy

0
2dx

0 0
2 dy

0 0
2 dx

0 0 0
2 dy 0 0 02

×h1�x2 −x1,y2 − y1�h	1�x 02 −x 01,y 02 −y 01�h1�x 0 02 −x 0 01 ,y 0 02 − y 0 01 �
×h	1�x 0 0 02 −x 0 0 01 ,y 0 0 02 − y 0 0 01 �hA2�x2,y2�A	

2�x 02,y 02�A2�x 0 02 ,y 0 02 �
×A	

2�x 0 0 02 ,y 0 0 02 �ih2�x −x2,y− y2�h	2�x −x 02,y− y 02�
×h2�x 0 −x 0 02 ,y 0 − y 0 02 �h	2�x 0 −x 0 0 02 ,y 0 − y 0 0 02 �, (A1)

where U 0�x1, y1� � 1 is a normal incident plane wave and
U θ�x 0 01 , y 0 01 � � exp�iky 0 01 sin θ� is the tilted plane wave with
a tilt angle θ. Since the two phase masks are independent,
the ensemble average can be separated. For a random function
φ�x, y�, if A�x, y� � exp�−iφ�x, y�� satisfies a complex circular
Gaussian distribution with zero mean [18], then

C �2,2��x1, y1, x 01, y 01, x 0 01 , y 0 01 , x 0 0 01 , y 0 0 01 �
� hA1�x1, y1�A	

1�x 01, y 01�A1�x 0 01 , y 0 01 �A	
1�x 0 0 01 , y 0 0 01 �i

� C �1,1��x1, y1, x 01, y 01�C �1,1��x 0 01 , y 0 01 , x 0 0 01 , y 0 0 01 �
� C �1,1��x1, y1, x 0 0 01 , y 0 0 01 �C �1,1��x 0 01 , y 0 01 , x 01, y 01�, (A2)

and

Fig. 3. Simulation and experimental results. (a) Comparison of the normalized angular PSDs obtained from the MC simulation and Eq. (17) with
different anisotropy factors g . As g decreases, the PSD broadens. Both curves peak at θ � 0. The value of P�θ� is slightly smaller than that obtained
from the MC simulation at larger angles, which might be due to the truncation at m � 6 when calculating P�θ�. (b) AME curves obtained from the
experiment (magenta curve, square markers), simulations with the conventional model (green solid curve), and our new model (black solid curve).
(c) A comparison of AME curves with different scattering components including only singly scattered light (green solid curve), i.e., the conventional
model, all scattering components integrated (black solid curve), i.e., the sPSD is obtained from the standard MC simulation, ballistic and the first six
scattering components (magenta solid curve), and ballistic and only singly scattered light (blue solid curve).
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C �2,2��x2, y2, x 02, y 02, x 0 02 , y 0 02 , x 0 0 02 , y 0 0 02 �
� hA2�x2, y2�A	

2�x 02, y 02�A2�x 0 02 , y 0 02 �A	
2�x 0 0 02 , y 0 0 02 �i

� C �1,1��x2, y2, x 02, y 02�C �1,1��x 0 02 , y 0 02 , x 0 0 02 , y 0 0 02 �
� C �1,1��x2, y2, x 0 0 02 , y 0 0 02 �C �1,1��x 0 02 , y 0 02 , x 02, y 02�, (A3)

where C �1,1��xi, yi, x 0i , y 0i� � hA�xi, yi�A	�x 0i , y 0i�i, i � 1, 2 is a
field correlation function. If each point in phase Mask 1 is in-
dependent, we have

C �1,1��x1, y1, x 01, y 01� � δ�x1 − x 01, y1 − y 01�, (A4)

C �1,1��x 0 01 , y 0 01 , x 0 0 01 , y 0 0 01 � � δ�x 0 01 − x 0 0 01 , y 0 01 − y 0 0 01 �, (A5)

C �1,1��x1, y1, x 0 0 01 , y 0 0 01 � � δ�x1 − x 0 0 01 , y1 − y
0 0 0
1 �, (A6)

and

C �1,1��x 0 01 , y 0 01 , x 01, y 01� � δ�x 01 − x 0 01 , y 01 − y 0 01 �: (A7)

Thus, Eq. (A1) becomes

C �2,2��x, y, x 0, y 0�

�
ZZ

dx1dy1

ZZ
dx 0 01 dy

0 0
1

ZZ ZZ ZZ ZZ
dx2dy2dx

0
2dy

0
2

× dx 0 02 dy
0 0
2 dx

0 0 0
2 dy 0 0 02 h1�x2 − x1, y2 − y1�h	1�x 02 − x1, y 02 − y1�

× h1�x 0 02 − x 0 01 , y
0 0
2 − y 0 01 �h	1�x 0 0 02 − x 0 01 , y

0 0 0
2 − y 0 01 �

× hA2�x2, y2�A	
2�x 02, y 02�A2�x 0 02 , y 0 02 �A	

2�x 0 0 02 , y 0 0 02 �i
× h2�x − x2, y − y2�h	2�x − x 02, y − y 02�h2�x 0 − x 0 02 , y 0 − y 0 02 �

× h	2�x 0 − x 0 0 02 , y 0 − y 0 0 02 � �
ZZ

dx1dy1

ZZ
dx 01dy

0
1

× exp�−iky1 sin θ − iky 01 sin θ�

×
ZZ ZZ ZZ ZZ

dx2dy2dx
0
2dy

0
2dx

0 0
2 dy

0 0
2 dx

0 0 0
2 dy 0 0 02

× h1�x2 − x1, y2 − y1�h	1�x 02 − x 01, y 02 − y 01�
× h1�x 0 02 − x 01, y

0 0
2 − y 01�h	1�x 0 0 02 − x1, y 0 0 02 − y1�

× hA2�x2, y2�A	
2�x 02, y 02�A2�x 0 02 , y 0 02 �A	

2�x 0 0 02 , y 0 0 02 �i
× h2�x − x2, y − y2�h	2�x − x 02, y − y 02�h2�x 0 − x 0 02 , y 0 − y 0 02 �
× h	2�x 0 − x 0 0 02 , y 0 − y 0 0 02 �: (A8)

When the diameter of the first aperture approaches infinity, we
obtain

C �2,2��x, y, x 0, y 0�

� 1

λ8d 4l42

ZZ ZZ
dx2dy2dx

0 0
2 dy

0 0
2

� 1

λ4d 4

ZZ ZZ
dx2dy2dx

0
2dy

0
2 exp�−ik sin θ�y2 − y 02��

× hA2�x2, y2�A	
2�x 02, y 02�A2�x 02, y 02 − d sin θ�

× A	
2�x2, y2 − d sin θ�ih2�x − x2, y − y2�

× h	2�x − x 02, y − y 02�h2�x 0 − x 02, y 0 − y 02 � d sin θ�
× h	2�x 0 − x2, y 0 − y2 � d sin θ�: (A9)

With the assumption that each point in phase Mask 2 is inde-
pendent, Eq. (A9) becomes

C �2,2��x, y, x 0, y 0�

� 1

λ8d 4l 42

ZZ
dx2dy2

ZZ
dx 0 02 dy

0 0
2 � δ�0, 0�

λ8d 4l 42

ZZ
dx2dy2

� δ2�0, d sin θ�
λ8d 4l42

����
ZZ

dx2dy2 exp

�
ik
l 2
��x − x 0�x2

� �y − y 0 − d sin θ − l 2 sin θ�y2�
�����2: (A10)

Neglecting the constant coefficient,
C �2,2��x, y, x 0, y 0�

�
ZZ

dx2dy2

ZZ
dx 0 02 dy

0 0
2 � δ�0, 0�

ZZ
dx2dy2

� δ2�0, d sin θ�
����
ZZ

dx2dy2 exp

�
ik
l 2
��x − x 0�x2

� �y − y 0 − d sin θ − l 2 sin θ�y2�
�����2: (A11)

For phase Mask 2 with an aperture radius of r, we have

C �2,2��x, y, x 0, y 0�
� π2r4 � δ�0, 0�πr2 � 16r4δ2�0, d sin θ�

× sinc2
�
2r
λl2

�x − x 0�
�
sinc2

�
2r
λl2

�y − y 0 − d sin θ − l 2 sin θ�
�
:

(A12)

The sinc function determines the speckle size on the observa-
tion plane. The first and second terms constitute a constant.
Only the third term is related to a variable coefficient of θ.
We define it as

ΔC �2,2��x, y, x 0, y 0� � 16r4δ2�0, d sin θ�sinc2
�
2r
λl2

�x − x 0�
�

× sinc2
�
2r
λl2

�y − y 0 − d sin θ − l2 sin θ�
�
,

(A13)

which was also called the correlation of the intensity fluctuation
in ghost imaging [29]. Obviously,ΔC �2,2��x, y, x 0, y 0� has an im-
pulse only at θ � 0; thus, the range of the memory effect is zero.

For a common phase mask such as a ground glass disk,
hA2�x2,y2�A	

2�x 02,y 02�i�expf−�2π�n−1��2σ2λ2κ2 ��x2−x 02�2��y2−y 02�2�g,
where σ and κ are the standard deviation of the height and the
transverse correlation length, respectively, n is its refractive in-
dex [30–32], and the radius of Aperture 2 is r. Then, the
counterpart of Eq. (A13) is

ΔC �2,2��x, y, x 0, y 0�

� 16r4 exp
�
−
2�2π�n − 1��2σ2

λ2κ2
d 2 sin2 θ

�
sinc2

�
2r
λl2

�x − x 0�
�

× sinc2
�
2r
λl 2

�y − y 0 − d sin θ − l 2 sin θ�
�
: (A14)

The coefficient is a Gaussian function of θ, and the width at
1∕e can be derived from
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2�2π�n − 1��2σ2
λ2κ2

d 2 sin θ2 � 1: (A15)

Under the paraxial approximation, θ is sufficiently small such
that sin θ ≈ θ, and Eq. (A15) becomesffiffiffi

2
p

2π�n − 1�σdθ
λκ

� 1: (A16)

Therefore, the AME range is

Δθ � λ

πd
·

κffiffiffi
2

p �n − 1�σ : (A17)

It is inversely proportional to both the thickness d and the aver-
age ratio of the longitudinal size to the transverse size of the
grains of a typical ground glass disk

ffiffiffi
2

p �n − 1�σ∕κ.

APPENDIX B: WORKFLOW FOR GENERATING
A PHASE MASK

By performing a transformation from θ−φ coordinates to fx−fy
coordinates for Eq. (19), we obtain the spatial power spectral
density of the phase mask S�fx , fy� � jM �fx , fy�j2. Then,
the x–y domain mask M �x, y� can be obtained by performing
a Fourier transform ofM �fx , fy�. We know that the x–y domain
presentation of a phase mask must be phase only; in other words,
the absolute value of a phase mask must be uniform in the x–y
space, which is the demand of the time-reversal symmetry of a
pure scattering medium. However, the Fourier transform of
M �fx , fy� does not guarantee a phase-only mask in the x–y do-
main. Fortunately, the total angular distribution function P�θ�
limits only the amplitude ofM�fx , fy�, because P�θ� represents
only the intensity distribution of the scattered light. Thus,
M �fx , fy� can be assigned any phase distribution, which allows
us to find a special phase distribution that leads to a phase-only
maskM�x, y�. This is a typical problem that can be solved by the
Gerchberg–Saxton (G-S) algorithm [33] with the detailed algo-
rithm workflow shown in Fig. 4.

APPENDIX C: COMPARISON OF THE NEW
AND CONVENTIONAL PHASE MASK MODELS

By considering more ballistic light, the new multiple-random-
phase-mask model has a larger AME range than the conven-
tional one, as shown in Fig. 5. In the new model, the distance
between two adjacent masks is not necessarily the MFP of the

scattering medium; instead, it can be flexibly adjusted accord-
ing to computational resources and the requirements for pre-
cision. In the simulation, we set the distance to be equal to or
half of the MFP and use angular spectrum diffraction theory to
calculate the free propagation of light between two adjacent
masks. The consistency between the blue and orange curves
in Figs. 5(f ) and 5(g) verifies the reliability and self-consistency
of the new phase mask model.

APPENDIX D: SCHEMATIC FIGURE OF THE
PRINCIPLE OF SCANNING A TIME-REVERSED
FOCUS

The schematic of the principle of scanning a time-reversed
focus is shown in Fig. 6.

Fig. 4. Workflow for generating the real-domain phase-only masks
using the G-S algorithm. M 1�fx , fy� and M 2�fx , fy� are the Fourier-
domain expressions of the mask. M 1�x, y� and M 2�x, y� are the real-
domain expressions of the mask. The algorithm starts fromM 1�fx , fy�
with an initial value of

ffiffiffiffiffi
I 0

p
exp�iϑ0�, where

ffiffiffiffiffi
I 0

p
is the envelope of its

amplitude and ϑ0 is a random phase distribution. After several itera-
tions, the algorithm will converge; then,M 2�x, y� is the desired phase-
only mask.

Fig. 5. Comparison between the conventional phase mask model
and our new phase mask model for a scattering medium with g � 0.95.
(a) Phase map of the conventional mask. (b) and (c) Phase maps of our
new masks when the interval d is set to be the MFP and 0.5 times the
MFP, respectively. (d) Phase distributions of the three masks. Compared
to the conventional mask in (a), which has a full 2π phase modulation
depth, the new masks in (b) and (c) have shallower modulation depths,
which allow more ballistic light to pass through. When the interval be-
tween adjacent masks is smaller, the modulation depth will be shallower.
(e) Spatial frequency distributions of the three masks. The conventional
mask has a very smooth spatial frequency distribution, but for the new
masks, there is a sharp peak at zero frequency, which is caused by the
delta function of the ballistic light. (f) and (g) Memory effect curves for
0.5 mm and 1 mm thick scattering media with an MFP of 0.1 mm and
g � 0.95 modelled by the conventional phase mask model (purple
curve) and our new model (blue curve for d � MFP, orange curve
for d � 0.5 ×MFP).
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ramp to the phase-conjugated wavefront, we can scan the focus along a desired direction.

1330 Vol. 7, No. 11 / November 2019 / Photonics Research Research Article

https://doi.org/10.1103/PhysRevLett.61.834
https://doi.org/10.1103/PhysRevLett.61.2328
https://doi.org/10.1103/PhysRevLett.61.2328
https://doi.org/10.1038/nature11578
https://doi.org/10.1038/nphoton.2014.189
https://doi.org/10.1038/srep32696
https://doi.org/10.1038/srep32696
https://doi.org/10.1038/srep33558
https://doi.org/10.1364/OE.25.003935
https://doi.org/10.1038/s41598-017-10450-7
https://doi.org/10.1364/OL.43.001670
https://doi.org/10.1364/OL.43.001670
https://doi.org/10.1364/AO.57.000905
https://doi.org/10.1364/AO.57.000905
https://doi.org/10.1038/s41598-018-27754-x
https://doi.org/10.1109/JPHOT.2018.2873089
https://doi.org/10.1364/OE.23.013505
https://doi.org/10.1364/OE.22.003405
https://doi.org/10.1364/OE.22.003405
https://doi.org/10.1038/nphys3373
https://doi.org/10.1364/OPTICA.4.000886
https://doi.org/10.1364/OPTICA.4.000886
https://doi.org/10.1364/OE.26.033066
https://doi.org/10.1364/OL.22.001268
https://doi.org/10.1364/OL.22.001268
https://doi.org/10.1364/OL.32.002309
https://doi.org/10.1364/OE.20.001733
https://doi.org/10.1038/nphoton.2014.322
https://doi.org/10.1364/OPTICA.2.000728
https://doi.org/10.1038/nphoton.2014.251
https://doi.org/10.1038/srep01909
https://doi.org/10.1038/ncomms2786
https://doi.org/10.1103/PhysRevLett.92.093903
https://doi.org/10.1103/PhysRevB.38.2297
https://doi.org/10.1103/PhysRevB.38.2297
https://doi.org/10.1063/1.368419
https://doi.org/10.1038/srep25718
https://doi.org/10.1038/srep25718
https://doi.org/10.1364/AO.21.002758
https://doi.org/10.1364/AO.21.002758

	XML ID funding

